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Abstract

Sepsis-induced myocardial dysfunction is a common complication in septic patients and is associated with
increased mortality. In the clinical setting, it was once believed that myocardial dysfunction was not a major
pathological process in the septic patients, at least in part, due to the unavailability of suitable clinical markers to
assess intrinsic myocardial function during sepsis. Although sepsis-induced myocardial dysfunction has been
studied in clinical and basic research for more than 30 years, its pathophysiology is not completely understood, and
no specific therapies for this disorder exist. The purpose of this review is to summarize our current knowledge of
sepsis-induced myocardial dysfunction with a special focus on pathogenesis and clinical characteristics.
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Background
Sepsis is a systemic deleterious host response to infec-
tion or injury resulting in severe sepsis and septic shock.
It is a leading cause of morbidity and mortality in inten-
sive care units [1, 2]. Although the hospital mortality of
septic patients decreased from 37 to 30.8 % during the 2
years after the introduction of the Surviving Sepsis Cam-
paign guidelines for the management of sepsis, mortality
remains high [3]. In 2012, a global study of the burden
of sepsis estimated that the case-fatality rate for patients
with severe sepsis approaches 50 % [4].
The cardiovascular system plays an important role in

the pathogenesis of sepsis. Over the last 50 years, a large
number of studies have demonstrated that myocardial
dysfunction is a common finding in septic patients, and
approximately 50 % of septic patients exhibit signs of
myocardial dysfunction. Nevertheless, the exact clinical
significance of sepsis-induced myocardial dysfunction
(SIMD) is still elusive. Because the heart, as only one
part of the circulatory system, constantly responds to
changing peripheral hemodynamics, it is difficult to
distinguish between cardiac responses to alterations in
preload, afterload or/and neurohumoral activity during
sepsis and the direct influence of sepsis on the heart in

the clinical setting [5, 6]. Recently, many clinical studies
have suggested that myocardial dysfunction was associ-
ated with increased mortality in septic patients [7–9].
An animal experimental study showed that myocardial de-
pression was present at the early stage of sepsis, and early
myocardial functional changes could predict outcomes in
septic animals [10]. In particular, using transgenic mice
with cardiomyocyte-specific expression of a constitutively
active PI3K isoform that protects myocardial function, Li
and coworkers demonstrated, for the first time, a causal
relationship between the maintenance of myocardial
function and survival in sepsis. They found that cardiac
specific activation of PI3K/Akt-dependent signaling
significantly attenuated myocardial dysfunction and, in
turn, improved survival in cecal ligation and puncture
(CLP)-induced sepsis [11]. Therefore, fully understanding
the pathogenesis of SIMD and seeking specific therapy will
provide beneficial effects on outcomes in septic patients.
The aim of the present review is to discuss the patho-

physiology of SIMD, with a special focus on its clinical
characteristics and pathogenesis.

The definition of SIMD
Although numerous studies have demonstrated evidence
of cardiovascular impairments in patients with sepsis
over the last 50 years, there is no universally accepted* Correspondence: owanghd@jnu.edu.cn
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definition of SIMD [12]. The initial concept of SIMD
came from the study by Parker and Parrillo et al. in
1984. They observed that 50 % of septic patients had a
decreased initial left ventricle ejection fraction (EF) with
increased mean end-systolic and end-diastolic volumes
despite normal or elevated cardiac index found in all
septic patients [13]. Since then, SIMD has been defined
in numerous clinical investigations as a reversible de-
crease in EF of both ventricles, with ventricular dilation
and less response to fluid resuscitation and catechol-
amines [14]. However, it is now well known that left
ventricular EF is a load-dependent index that reflects the
coupling between left ventricular afterload and contract-
ility, rather than the intrinsic myocardial contractile
function. During septic shock, although left ventricular
intrinsic contractility is seriously impaired, left ventricu-
lar EF may be normal when the afterload is severely
depressed [12, 15]. On the other hand, myocardial dys-
function has been demonstrated to be constant if deter-
mined by using the load-independent parameters of
systolic and diastolic function in all animal experimental
models of septic shock [16]. Thus, it has recently been
suggested that SIMD can be defined as the intrinsic myo-
cardial systolic and diastolic dysfunction of both the left
and right sides of the heart induced by sepsis [12, 16].

The clinical characteristics of SIMD
Hemodynamic alterations during sepsis have been inves-
tigated for 60 years. Early animal studies performed by
Weil et al. in 1956 showed that an injection of endotoxin
could cause a sudden decrease in venous return, arterial
blood pressure and cardiac output (CO) with increased
systemic vascular resistance (SVR), leading to animal
death [17]. Clinical observations by Clowes and McLean
et al. demonstrated that cardiovascular disturbances dur-
ing septic shock included two distinct clinical pictures.
One was an early hyperdynamic phase (warm shock)
characterized by increased CO and decreased SVR, as
well as warm and perfused skin; another was late hypo-
dynamic phase (cold shock), in which SVR increased
and CO decreased, resulting in tissue hypoperfusion, cool
skin, organ failure and ultimate death [18, 19]. These find-
ings led to the belief that patients with septic shock ini-
tially went through an early hyperdynamic phase and
eventually either recovered or deteriorated into the hypo-
dynamic phase and even death. However, these studies
used central venous pressure (CVP) to reflect left ven-
tricular end-diastolic volume and adequacy of resuscita-
tion. In fact, we now know that CVP is not a reliable
index of cardiac preload in septic patients. With the intro-
duction of pulmonary artery catheters, which allow simul-
taneous measurement of both CO and pulmonary artery
wedge pressure at the bedside, many studies have shown
that septic shock patients or animals with adequate fluid

resuscitation have only a persistent hyperdynamic state,
which usually persists until death even in nonsurvivors,
and the hypodynamic state is very likely due to an inad-
equate fluid resuscitation [20]. It is now generally accepted
that these hemodynamic alterations during sepsis are due
to decreased preload, reduced afterload, myocardial dys-
function, blood flow redistribution between organs and
microcirculatory impairments [12].

Changes in systolic and diastolic function
In 1984, Parker and Parrillo et al. provided the first valu-
able clue for the SIMD [13]. Using serial radionucleotide
ventriculograms and simultaneous evaluation of CO by
thermodilution, they demonstrated that 20 septic shock
patients had a high CO and low SVR. Importantly, they
further found that 13 patients who survived had a de-
pressed left ventricular EF and acute left ventricular dilata-
tion, which were sustained for 4 days and then returned to
normal within 7–10 days. However, nonsurvivors of septic
shock maintained normal left ventricular EF and volume.
Similarly, Parker et al. used the same methodology and
observed right ventricular dysfunction in septic shock pa-
tients. They found that the survivors and nonsurvivors of
septic shock maintained a reversible reduction in biventri-
cular EF and increased end-diastolic and -systolic volumes
in the study period [21]; these results are different from
those found in their previous study.
During the same historical period, two-dimensional echo-

cardiography was performed to evaluate myocardial func-
tion in septic patients [22, 23]. Because echocardiography is
a first-line non-invasive technique for hemodynamic evalu-
ation in patients with cardiovascular disorders and it can be
performed at the bedside, various echocardiographic indi-
ces, such as EF and cardiac index, have been developed to
assess cardiac function. Vieillard Baron and coworkers in-
vestigated 40 patients with septic shock by transesophageal
echocardiography and observed that stroke index was
strongly correlated with left ventricular EF, while left
ventricular volume always remained in a normal range
after adequate preload optimization [24]. In 2013, a meta-
analysis that included more than 700 patients failed to find
any evidence to support the above view that the survivors
from severe sepsis or septic shock had a reduced EF. In
addition, there were no significant differences between
septic survivors and nonsurvivors in terms of biventricular
EF and indexed biventricular dimensions [25]. In another
meta-analysis, a cut-off of left ventricular EF of 50 % was
used to identify patients with systolic dysfunction, and no
significant difference in mortality rates was found in septic
patients with reduced EF compared to patients with nor-
mal EF [8]. Evidently, these studies revealed a complicated
and contradictory picture about myocardial dysfunction in
septic patients. It is now known that these inconsistent re-
sults from the above studies are very likely due to the
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limitations of currently used indices of ventricular func-
tion because cardiac index and EF are load-dependent in-
dices that do not reflect the intrinsic myocardial
contractile function during sepsis [16].
To detect subtle myocardial dysfunction during sepsis,

some investigators examined myocardial function during
sepsis using advanced echocardiographic techniques, such
as speckle tracking and Doppler tissue echocardiography.
Speckle tracking echocardiography is more sensitive than
the conventional echocardiographic technique and is able
to detect ventricular strain that reflects segmental myocar-
dial deformation. It was demonstrated that peak left ven-
tricular global longitudinal systolic strain, determined by
using speckle tracking echocardiography at the time of ad-
mission in septic patients, correlated with mortality rate,
whereas left ventricular EF had no prognostic relevance
[9]. Another clinical investigation also suggested that
strain imaging by speckle tracking echocardiography
might be useful in the early detection of myocardial dys-
function in sepsis. It showed that 50 % of septic patients
with preserved left ventricular EF had a depressed left ven-
tricular global longitudinal function compared to non-
septic patients. In patients with sepsis and preserved left
ventricular EF, both left ventricular global and right ven-
tricular free wall strain were lower than in non-septic pa-
tients with preserved left ventricular EF. These findings
indicate that left ventricular and right ventricular systolic
dysfunction in patients with early septic shock and pre-
served left ventricular EF can be detected by speckle track-
ing echocardiography [26]. It is noteworthy that the
clinical features of segmental ventricular dysfunction dur-
ing SIMD are sometimes consistent with Takotsubo car-
diomyopathy, in which the contractile function of the
middle-to-apical segments of the left ventricle is depressed
and there is hyperkinesis of the basal walls, inducing the
balloon-like appearance of the distal ventricle [27].
In contrast to systolic dysfunction, diastolic dysfunc-

tion is often ignored, and its role in determining early
mortality from sepsis has not been adequately investi-
gated. Recently, it has been demonstrated that the mitral
annular early diastolic peak velocity (e’ wave) obtained
by tissue Doppler imaging is one of the most load-
independent measures of diastolic dysfunction. The ratio
of the early mitral inflow velocity (E), recorded with
pulsed-wave Doppler, to the e’ wave (E/e’) correlates with
left ventricular end-diastolic pressure, and a high E/e’ ratio
represents low left ventricular compliance in numerous
cardiac conditions [28, 29]. Using the reduced e’ wave or
the increased E/e’ ratio to identify left ventricular diastolic
dysfunction, some investigators found that diastolic dys-
function was common in septic patients. A reduced mitral
annular e’-wave was the strongest predictor of mortality,
and E/e’ was an independent predictor of hospital survival,
which offered better discrimination between hospital

survivors and non-survivors than cardiac biomarkers such
as cardiac-specific troponins (cTn) and N-terminal proB-
type natriuretic peptide (NT-proBNP) [7, 30, 31].

Alterations in electrocardiogram
In 1982, Terradellas et al. reported the acute elevation of
the ST segment in bacterial shock patients with no history
of heart disease [32]. Other investigators then found that
endotoxin induced initial tachycardia followed by signifi-
cant bradycardia and elevation of the ST segment in rats
[33]. However, it was also reported that ST-segment eleva-
tions were rare in septic shock patients in the setting of
normal coronary angiography. In addition, the electrocar-
diographic changes during septic shock also include a loss
of QRS amplitude, increase in QT interval, development
of narrowed QRS intervals with deformed bundle branch
blocks [34] and new-onset atrial fibrillation, especially in
older septic shock patients [35].

Biomarkers of SIMD
B-type natriuretic peptide (BNP) is a hormone synthe-
sized in the myocardium. It is produced in the prohor-
mone form, and before secretion is split into the inactive
NT-proBNP and the active BNP [36]. Numerous studies
demonstrated markedly elevated plasma levels of BNP
and NT-proBNP in septic patients [37, 38], and the in-
creased plasma BNP and NT-proBNP concentrations
were associated with myocardial depression and in-
creased mortality in patients with sepsis [39, 40]. These
findings suggest that plasma BNP and NT-proBNP levels
represent reliable markers for the identification of SIMD.
However, other studies indicate that the relationship be-
tween BNP and both left ventricular EF and left-sided fill-
ing pressures is weak and data on the prognostic impact
of high BNP levels in septic patients are conflicting [41].
In fact, many factors, including right ventricular overload,
catecholamine therapy and increased cytokine production,
may contribute to BNP release during sepsis. Thus, it is
suggested that cTn may be integrated into the monitoring
of SIMD [41]. Plasma cTnI and cTnT levels have also
been proven to be highly sensitive and specific markers of
SIMD [14]. Although the mechanisms underlying cTnI re-
lease during sepsis are still unclear, increased plasma con-
centrations of cTnI and cTnT were found in septic
patients, and both cTnI and cTnT were exclusively associ-
ated with left ventricular dysfunction [42]. A meta-
analysis showed that plasma troponin elevation in septic
patients was also a predictor of mortality [43]. In addition,
serum heart-type fatty acid-binding protein concentration
was also found to be a useful diagnostic marker for organ
dysfunction and 28-day mortality in septic patients [44, 45].
Zhang et al. found that serum heart-type fatty acid-binding
protein was frequently elevated in septic patients and
appeared to be associated with SIMD [46]; large
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prospective clinical trials on its role in identifying
SIMD are now warranted.

Cardiac structural changes
Human autopsies and animal experimental studies have
revealed that sepsis-induced myocardial changes are clas-
sified within inflammatory cardiomyopathy. The major
cardiac pathological changes during sepsis include myo-
cardial infiltration by immune cells (especially macro-
phages and neutrophils), subendocardial hemorrhage,
interstitial and intracellular edema, endothelial cell edema,
microcirculatory fibrin deposition, as well as focal
myofibrillar dissolution, cardiomyocyte necrosis and
interstitial fibrosis. Intracytoplasmic lipid accumula-
tion in cardiomyocytes is also observed in septic
hearts. Immunohistochemical examination shows that
high diffuse expression of tumor necrosis factor-α
(TNF–α) is localized to cardiomyocytes, macrophages,
smooth muscle cells and endothelial cells [12, 47–49].
As mentioned above, SIMD is thought to be com-
pletely reversible. However, we do not know whether
the histological myocardial alterations in sepsis are re-
versible. Therefore, the possibility that myocardial
dysfunction is not completely reversible in septic pa-
tients should be further examined.

Pathogenesis of SIMD
Based on an animal study, the first hypothesis on the
mechanism of SIMD was global myocardial ischemia
resulting from inadequate coronary blood flow. How-
ever, coronary blood flow was later found to be either
preserved or increased in septic shock patients with
myocardial dysfunction, disproving the above hypothesis.
Although some studies demonstrated that impairment in
cardiac microcirculation was present during sepsis due to
significant maldistribution of coronary blood flow, endo-
thelial damage, intravascular fibrin depositions and neu-
trophil infiltration, which might result in focal myocardial
ischemia and decreased cardiac function, no myocardial
hypoxia was confirmed in septic animals. It is now sug-
gested that the elevation of plasma cardiac troponins may
be attributed to an increase in cardiomyocyte membrane
permeability rather than myocardial ischemic necrosis.
These findings indicate that coronary circulation alter-
ations are less important in the mechanisms of SIMD
[6, 50]. According to the current evidence, it is generally
accepted that SIMD may be a result of the interaction of
many factors, including inflammation, metabolism and
neuroimmunomodulation.

Myocardium-depressing factors
In the 1960s, many investigators reported the pres-
ence of myocardium-depressing factors that could
cause SIMD [12]. During sepsis, various pathogen-

associated molecular patterns (PAMPs), such as lipo-
polysaccharide (LPS), and endogenous damage-
associated molecular patterns (DAMPs), including
high mobility group box 1 (HMGB1) and extracellular
histones, interact with Toll-like receptors (TLRs) on
immune cells and other cells. All TLRs, except TLR3,
signal through the myeloid differentiation factor 88
(MyD88)-dependent pathway and activate c-Jun N-
terminal kinase (JNK), extracellular signal-regulated
kinases 1/2 (ERK1/2), p38 mitogen-activated protein
kinase (MAPK) and the transcription factor nuclear
factor (NF)-kB signaling pathways, which in turn in-
duce the production of multiple proinflammatory cy-
tokines, including interleukin (IL)-1, IL-6 and TNF-α
[51, 52]. Several substances have been considered as
myocardium-depressing factors, including TNF-α, IL-1,
IL-6, complement anaphylatoxin (C5a) and LPS (Table 1)
[12, 14]. For example, prolonged exposure of adult rat
ventricular myocytes to a mixture of LPS, TNF-α, IL-1
and IL-6 inhibited cell contractility in vitro [53], and treat-
ment with a monoclonal anti-TNF antibody in patients
within 24 h of septic shock improved left ventricular
function [54]. However, a recent clinical study investi-
gated the relationship between serum cytokine con-
centrations (IL-1β, IL-6, IL-8, IL-10, IL-18, TNF-α
and monocyte chemoattractant protein-1) and septic
myocardial dysfunction. The authors defined reduced
left ventricular EF of < 50 % or < 55 % as systolic dys-
function and e wave < 8 cm/s as diastolic dysfunction
and found that none of these cytokines correlated
with left ventricular EF and e’-wave velocities in sep-
tic patients. Similarly, there were no differences in
cytokine concentrations between patients dichoto-
mized to high and low left ventricular EF or e wave.
Therefore, none of the measured circulating cytokines
correlated with systolic or diastolic myocardial dys-
function in severe sepsis or septic shock in the clin-
ical setting [55]. More recently, experimental studies

Table 1 Myocardial depressant factors in sepsis

Classification Myocardial depressant factor

Cytokines Interleukin-1
Interleukin-6
Tumor necrosis factor-α

Complement components Activated complement 3
Complement anaphylatoxin
(C5a)

Pathogen-associated molecular
patterns

LPS

Damage-associated molecular
patterns

High mobility group box 1

Extracellular histones

Matrix metalloproteinases Matrix metalloproteinase-9
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found that LPS induced myocardial HMGB1 expres-
sion and increased plasma HMGB1 level in rats and
mice and that HMGB1 stimulation produced a nega-
tive inotropic effect in the isolated rat heart [56, 57].
Similarly, another study demonstrated that increased
circulating histone levels were significantly associated
with new-onset left ventricular dysfunction and ar-
rhythmias in septic patients with no previous cardiac
dysfunction [58]. Nevertheless, the role of circulating
HMGB1 and histones in SIMD deserves to be further
investigated.
Indeed, it is likely that circulating myocardium-

depressing factors are the initial stimuli and driving
forces of septic myocardial dysfunction. It is well known
that cardiomyocytes express Toll-like receptors such as
TLR2 and TLR4 [59, 60]. LPS stimulates TLR4 on cardi-
omyocytes and leads to the phosphorylation of p38
MAPK and JNK and the activation of NF-kB, which in-
duces cardiomyocyte TNF-α expression and decreases
myocardial contractility [61]. Natural deletion of TLR4
[62] or MyD88 deletion in cardiomyocytes confers a pro-
found protection with markedly improved cardiac func-
tion and survival in an LPS-induced shock model [63].
In addition, extracellular histones also stimulate cardio-
myocyte TLR4 and induced myocardial dysfunction [64].
We recently observed that stimulation of cardiomyocyte
β1-adrenoceptor promoted p38MAPK, JNK and NF-kB
activation and subsequent TNF-α expression in LPS-
treated cardiomyocytes [65]. Activation of cardiomyocyte
α1-adrenoceptor can suppress LPS-induced cardiomyo-
cyte TNF-α expression and improve cardiac dysfunction
during endotoxemia [66]. We also found that blockade
of the α2-adrenoceptor suppressed myocardial TNF-α
and inducible nitric oxide synthase (iNOS) expression
and cardiomyocyte apoptosis and cardiac dysfunction in
endotoxemic animals [67]. Thus, it is necessary for regu-
lating cardiomyocyte adrenergic signals to develop inter-
ventions for some myocardium-depressing factors and
to provide therapeutic targets for SIMD.
In addition to cardiomyocytes, cardiac fibroblasts and

endothelial cells are involved in SIMD. Cardiac fibro-
blasts make up 60 %–70 % of the total cell number in
the heart. Tomita et al. demonstrated that LPS signifi-
cantly increased the expression of TNF-α and matrix
metalloproteinase (MMP)-9 in cultured cardiac fibro-
blasts. CLP induced cardiac MMP-9 expression, cardiac
fibrosis and cardiac dysfunction in mice, and treatment
with a broad-spectrum MMP inhibitor significantly alle-
viated these histological and functional changes during
sepsis [68]. In addition, endothelial cell activation also
plays a critical role in septic injury in multiple organs. It
has been demonstrated that serum levels of sphingosine-
1-phosphate, a potent regulator of endothelial integrity,
are dramatically decreased and inversely associated with

disease severity in septic patients [69]. Clinical evidence
showed that systolic cardiac dysfunction was directly asso-
ciated with markers of endothelial dysfunction in septic
patients [70]. Some studies reported that circulating
myocardium-depressing factors, such as TNF-α, increased
the expression of intercellular adhesion molecule-1
(ICAM-1) and vascular cell adhesion molecule-1 (VCAM-
1) in coronary endothelial cells and cardiomyocytes [71,
72]. Blockade of VCAM-1 reduced myocardial neutrophil
accumulation and abrogated LPS-induced cardiac dys-
function. The absence of ICAM-1 also reduced LPS-
induced cardiac dysfunction, but without decreasing
neutrophil accumulation. Moreover, the depletion of neu-
trophils failed to protect against LPS-induced myocardial
dysfunction. These results indicate that endothelial and/or
cardiomyocyte ICAM-1 and VCAM-1 mediate LPS-
induced myocardial dysfunction independent of neutro-
phil infiltration [73]. Some investigators generated
double transgenic mice that conditionally overexpress
a degradation-resistant form of I-kB, an inhibitor of
NF-kB, selectively on the endothelium. These authors
demonstrated that endothelial-selective blockade of
NF-kB activation markedly inhibited cardiac ICAM-1
and VCAM-1 expression and ameliorated myocardial
injury in both LPS and CLP models of sepsis [74].
Therefore, circulating myocardium-depressing factors
may activate cardiac fibroblasts and endothelial cells,
which contribute to SIMD. Collectively, circulating
PAMPs, DAMPs and cytokines can activate endothe-
lial cells, cardiac fibroblasts and cardiomyocytes and
increase the production of inflammatory mediators,
which further stimulate iNOS expression and cause
myocardial depression in sepsis [12, 50, 53, 64].

Autonomic dysregulation
The autonomic nervous system plays an important role
in sepsis. Some evidence indicates that sepsis induces
autonomic dysregulation, including neuronal and glial
apoptosis within the autonomic centers of the heart,
high plasma levels of catecholamines, reduced heart rate
variability and decreased cardiac responsiveness to in-
trinsic catecholamines, which may contribute to SIMD.
A number of studies showed decreased densities of β1-
adrenoceptors, reduced levels of stimulatory G-proteins
and increased expression of inhibitory G-proteins in car-
diomyocytes during sepsis. These results indicate that
impaired myocardial responsiveness to catecholamines
in sepsis can be attributed to the downregulation of ad-
renergic receptors and/or post-receptor signaling [6, 75].
In addition, β3-adrenoceptors, which mediate an in-
creased negative inotropic response to agonists, were
found to be upregulated during sepsis, suggesting that
activation of β3-adrenoceptors by catecholamines may
contribute to SIMD [76].
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Dysfunction of intracellular Ca2+ transporters in
cardiomyocytes
In addition to a decrease in myofilament Ca2+ sensitivity
due to a sustained increase in cardiac troponin I phos-
phorylation at Ser23/24 [77], a dysfunction of intracellu-
lar Ca2+ transporters in cardiomyocytes underlies SIMD.
During sepsis, downregulated L-type calcium channels
and a suppressed sarcoplasmic reticulum (SR) pump lead
to a decrease in the amplitude of cellular Ca2+ transients
and SR calcium load in cardiomyocytes [78]. CLP in-
creased myocardial angiotensin II content, which may be
associated with the disturbance of Ca2+ transport in the
cardiac SR [79]. LPS also specifically impaired sarcolem-
mal diastolic Ca2+ extrusion pathways by depressing the
function of the Na+/Ca2+exchanger and the plasmalemmal
Ca2+ ATPase, which in turn resulted in intracellular dia-
stolic Ca2+ overload [80]. This disruption of cellular Ca2+

homeostasis in cardiomyocytes may contribute to SIMD.
However, the mechanism underlying the reduction in
transient systolic Ca2+ is not well established. A recent
study demonstrated that sepsis induced a decrease in so-
dium current in cardiomyocytes, which reduced cardiac
excitability. This reduction in the density of Na+ channels
might lessen the transient Ca2+ action potential in cardio-
myocytes by decreasing the number of Ca2+ channels that
open during the action potential due to the reduction in
peak depolarization or/and by reducing Ca2+ entry due to
a shortening of the action potential [81].

Energetic starvation of cardiomyocytes
Although oxygenation of the myocardium does not ap-
pear to be altered during sepsis, accumulating evidence
indicates that impaired metabolism and reduced energy
production in cardiomyocytes play a critical role in
SIMD. Under normal conditions, approximately 70 % of
adenosine triphosphate (ATP) in cardiomyocytes is pro-
duced via fatty acid oxidation, and the remainder is pro-
duced via glucose oxidation. A small amount of ATP is
also derived from the catabolism of lactate and ketone
bodies [82]. During sepsis, inflammatory cytokines, such
as IL-1β, can downregulate very low-density lipoprotein
receptor expression in cardiomyocytes [83]. Decreased
expression of the very low-density lipoprotein receptor
and the fatty acid transporter CD36 inhibits lipid uptake
by cardiomyocytes [82]. Importantly, Toll-like receptor-
mediated inflammatory signaling reprograms cardiac en-
ergy metabolism, leading to a reduced expression of
fatty-acid-binding protein, acyl-CoA synthetase, and
fatty acid oxidation-associated transcriptional factors, in-
cluding peroxisome proliferator activated receptors
(PPARs) and PPARγ-coactivator-1 [82, 84]. Recently,
Drosatos et al. discovered that cardiomyocyte Krüppel-
like factor five upregulated PPARγ expression through
direct promoter binding, which was blocked in sepsis.

Depletion of cardiac myocyte-specific Krüppel-like factor
five not only reduced myocardial PPARγ expression,
fatty acid oxidation and ATP levels, but also increased
myocardial triglyceride accumulation and induced myo-
cardial dysfunction [85]. These data indicate that sepsis
inhibits intracellular fatty acid oxidation and could even-
tually reduce cardiomyocyte ATP production and myo-
cardial function. Restoration of myocardial fatty acid
oxidation improves SIMD. Drosatos et al. demonstrated
that both cardiomyocyte-specific expression of PPARγ
and activation of PPARγ by rosiglitazone increased myo-
cardial fatty acid oxidation and prevented LPS-induced
cardiac dysfunction, but without affecting the expression
of myocardial inflammatory cytokines [86]. Thus, al-
though inflammation is an important component of
mechanisms that mediate SIMD, the decrease in myo-
cardial fatty acid oxidation constitutes another critical
mechanism responsible for this disorder.

Mitochondrial dysfunction and oxidative-nitrosative stress
Although early myocardial dysfunction during sepsis is
associated with myocardial inflammation rather than mito-
chondrial injury [87], enzyme activities of nicotinamide-
adenine dinucleotid cytochrome c reductase, succinate
cytochrome c reductase and cytochrome c oxidase were
found to be significantly suppressed during sepsis. Mito-
chondrial complex II and complex IV were also downregu-
lated, and the myocardial ATP content markedly declined
during the late stage of sepsis [88]. These results indicate
that mitochondrial dysfunction associated with a decrease
in myocardial ATP content is likely correlated with the de-
terioration of myocardial function during the late stage of
sepsis. Furthermore, pharmacological inhibition of mito-
chondrial permeability transition by cyclosporine deriva-
tives was found to improve myocardial dysfunction and
survival in animal models of CLP-induced sepsis [89].
Similarly, the administration of mitochondria-targeted vita-
min E also protected myocardial mitochondrial structure
and function, inhibited mitochondrial oxidative stress,
and improved myocardial function in septic rats [90].
Thus, it is likely that mitochondrial dysfunction is causa-
tive rather than epiphenomenal and is relevant to SIMD.
However, the underlying mechanisms responsible for
sepsis-induced mitochondrial dysfunction are still not
completely elucidated. Oxidative-nitrosative stress due
to excessive production of mitochondrial reactive oxy-
gen species and nitric oxide, increased mitochondrial
permeability transition pore opening and increased
mitochondrial uncoupling may contribute to this type
of mitochondrial dysfunction [91, 92].

Cardiomyocyte apoptosis
In addition to leading to DNA fragmentation, activated
caspases can directly induce the breakdown of myofibrillar
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proteins, decrease ATPase activity and force development
in cardiomyocytes [93]. Although cardiomyocyte apoptosis
has not been observed in human autopsy specimens, there
is increasing evidence that caspase-3 activation and car-
diomyocyte apoptosis contribute to SIMD [94–96]. It is
generally accepted that the over-production of inflamma-
tory mediators and reactive oxygen species plays a critical
role in capase-3 activation and cardiomyocyte apoptosis
during sepsis [95, 97–99]. However, we recently found
that reduced cardiac endogenous norepinephrine or
blockade of β1-adrenoceptors almost completely abolished
cardiomyocyte apoptosis in LPS-challenged mice [67].
We further demonstrated that β1-adrenoceptor activa-
tion promotes LPS-induced cardiomyocyte apoptosis
[65]. Therefore, β1-adrenoceptor activation appears to
be more important than cytokines in LPS-induced
cardiomyocyte apoptosis. In fact, a randomized clin-
ical trial observed that therapy with the β-blocker
esmolol reduced heart rate, increased left ventricular
stroke work index and decreased 28-day mortality in
septic shock patients [100]. The reader can refer to
the excellent systematic review on β-blockers in septic
patients [101].

Conclusions
SIMD refers to the intrinsic myocardial systolic and dia-
stolic dysfunction of both the left and right sides of the
heart during sepsis. Early recognition of intrinsic myo-
cardial dysfunction is critical for the administration of
the most appropriate therapy for septic patients. How-
ever, traditional insensitive parameters, such as EF, can-
not accurately assess sepsis-induced intrinsic myocardial
dysfunction. It is now suggested that the routine use of
speckle tracking and tissue Doppler echocardiography
may be valuable in the identification of SIMD in septic
patients. The circulating myocardium-depressing factors
are only initial stimulators that induce cardiac structure
and function damage, in which cardiomyocytes, cardiac
endothelial cells and even fibroblasts are involved. A
deeper understanding of the effects of immuno-
metabolic and neuroendocrine factors on cardiomyo-
cytes, endothelial cells and fibroblasts at molecular and
subcellular levels will expand our knowledge of the
mechanisms contributing to SIMD. The elucidation of
these mechanisms should help identify new cardiac-
specific therapeutic targets and improve the prognosis of
septic patients.
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