Skip to main content

Table 3 Summary of the antibacterial agent-loaded coatings

From: Biomaterials science and surface engineering strategies for dental peri-implantitis management

Antibacterial agent

Fabrication method

Bacteria affected

Antibacterial period

Cell response to the surface

In vivo study

References

Biosurfactant

Rhamnolipid

Physical adsorption

S. aureus, S. epidermidis

3 d

No cytotoxic effect on MRC5 lung fibroblasts

-

[135]

Natural substance

Totarol

Spin coating process

S. gordonii, mixed oral bacterial film

2 d

-

-

[97]

Natural antibiotics

Minocycline

Layer-by-layer assembly

S. aureus

14 d

-

-

[136]

Antibacterial polymer

PHMB

Hydrogen bonding or physiochemical adsorption

F. nucleatum

7 d

-

-

[137]

Antibiotics

Gentamycin

Loading with silica nanoparticles

S. aureus

1 d

Biocompatible with primary human skin fibroblasts

-

[138]

Antibiotics

Doxycycline

Electrochemical method

S. epidermidis

14 d

No negative effect on MC3T3-E1 cell viability

Rabbit and dog models: enhanced bone formation

[133]

Antibiotics

Vancomycin

Loading with PLGA nanofibers

S. aureus

28 d

Enhanced cell viability of MC3T3-E1

Rabbit model: excellent antibacterial performance

[104]

Antibacterial agent

Chlorhexideine gluconate

Internal coating 1% chlorhexideine gluconate

Pathogenic bacteria in the oral cavity

6 months

-

No adverse effect and no implant failure, prevent bacterial infection

[139]

  1. PHMB polyhexamethylene biguanide, PLGA poly(lactic-co-glycolic acid), S. aureus Staphylococcus aureus, S. epidermidis Staphylococcus epidermidis, S. gordonii Streptococcus gordonii, F. nucleatum Fusobacterium nucleatum, MRC5 human embryo lung fibroblasts, MC3T3-E1 mouse embryonic osteoblast precursor cells