From: Biomaterials science and surface engineering strategies for dental peri-implantitis management
Antibacterial agent | Fabrication method | Bacteria affected | Antibacterial period | Cell response to the surface | In vivo study | References | |
---|---|---|---|---|---|---|---|
Biosurfactant | Rhamnolipid | Physical adsorption | S. aureus, S. epidermidis | 3 d | No cytotoxic effect on MRC5 lung fibroblasts | - | [135] |
Natural substance | Totarol | Spin coating process | S. gordonii, mixed oral bacterial film | 2 d | - | - | [97] |
Natural antibiotics | Minocycline | Layer-by-layer assembly | S. aureus | 14 d | - | - | [136] |
Antibacterial polymer | PHMB | Hydrogen bonding or physiochemical adsorption | F. nucleatum | 7 d | - | - | [137] |
Antibiotics | Gentamycin | Loading with silica nanoparticles | S. aureus | 1 d | Biocompatible with primary human skin fibroblasts | - | [138] |
Antibiotics | Doxycycline | Electrochemical method | S. epidermidis | 14 d | No negative effect on MC3T3-E1 cell viability | Rabbit and dog models: enhanced bone formation | [133] |
Antibiotics | Vancomycin | Loading with PLGA nanofibers | S. aureus | 28 d | Enhanced cell viability of MC3T3-E1 | Rabbit model: excellent antibacterial performance | [104] |
Antibacterial agent | Chlorhexideine gluconate | Internal coating 1% chlorhexideine gluconate | Pathogenic bacteria in the oral cavity | 6 months | - | No adverse effect and no implant failure, prevent bacterial infection | [139] |